If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+16x-31=0
a = 7; b = 16; c = -31;
Δ = b2-4ac
Δ = 162-4·7·(-31)
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{281}}{2*7}=\frac{-16-2\sqrt{281}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{281}}{2*7}=\frac{-16+2\sqrt{281}}{14} $
| 3-7x-1=x+18 | | 9x=6x+9= | | 9-3(k-9)=-4K+20-2 | | 189/x=21 | | 3x-8=4-(8+5x) | | (2x+5)/(x-2)=5 | | 7-8x=63 | | 85+2x=10x-35 | | 40-x/5=10 | | 30-3x=10 | | 5-(8x7)+18x=31x-(90+28x)-45 | | -5(8x-7)+18x=31x-(90+28x)-45 | | 2=f+1/3 | | e/2-7=9 | | 14x+3-7x+4-8x=0 | | (159,62+x*18,02=248,84,x) | | 8x=1=(3x=1)/5 | | 2x(5+3x)-(6x-1)(x+4)=8x-6 | | 18x+6x=0 | | 50x+120(230-x)=17100 | | 24=y/3+9 | | u/5+8=25 | | 5/14x=15/14 | | (x/0.7)-x=3000 | | 20*x=225 | | x-0.097x=2854.5 | | 3x2=50 | | 2(4x+4)=11x-20 | | -5(11x-6)=415 | | 5x-19=4/3x+24 | | -648=6(-11x-9) | | 7(6x-11)=469 |